Somatic and dendritic GABA(B) receptors regulate neuronal excitability via different mechanisms.

نویسندگان

  • Jean-Didier Breton
  • Greg J Stuart
چکیده

GABA(B) receptors play a key role in regulating neuronal excitability in the brain. Whereas the impact of somatic GABA(B) receptors on neuronal excitability has been studied in some detail, much less is known about the role of dendritic GABA(B) receptors. Here, we investigate the impact of GABA(B) receptor activation on the somato-dendritic excitability of layer 5 pyramidal neurons in the rat barrel cortex. Activation of GABA(B) receptors led to hyperpolarization and a decrease in membrane resistance that was greatest at somatic and proximal dendritic locations. These effects were occluded by low concentrations of barium (100 μM), suggesting that they are mediated by potassium channels. In contrast, activation of dendritic GABA(B) receptors decreased the width of backpropagating action potential (APs) and abolished dendritic calcium electrogenesis, indicating that dendritic GABA(B) receptors regulate excitability, primarily via inhibition of voltage-dependent calcium channels. These distinct actions of somatic and dendritic GABA(B) receptors regulated neuronal output in different ways. Activation of somatic GABA(B) receptors led to a reduction in neuronal output, primarily by increasing the AP rheobase, whereas activation of dendritic GABA(B) receptors blocked burst firing, decreasing AP output in the absence of a significant change in somatic membrane properties. Taken together, our results show that GABA(B) receptors regulate somatic and dendritic excitability of cortical pyramidal neurons via different cellular mechanisms. Somatic GABA(B) receptors activate potassium channels, leading primarily to a subtractive or shunting form of inhibition, whereas dendritic GABA(B) receptors inhibit dendritic calcium electrogenesis, leading to a reduction in bursting firing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABAB Receptors Modulate NMDA Receptor Calcium Signals in Dendritic Spines

Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GAB...

متن کامل

GABAB Receptor Activation Inhibits Neuronal Excitability and Spatial Learning in the Entorhinal Cortex by Activating TREK-2 K+ Channels

The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a spe...

متن کامل

The Influence of GABAergic signaling on dendritic processing

iv v Für meine " Mom " , auf die ich unglaublich stolz bin und Für meinen " Dad " , den ich sehr vermisse. vi vii Summary GABAergic (γ-aminobutyric acid-releasing) signaling plays a crucial role in integration processes of pyramidal neurons. Specific subtypes of GABA releasing interneurons innervate different compartments of pyramidal neurons; thereby modulating the summation of excitatory syna...

متن کامل

[Cellular mechanisms regulating neuronal excitability: functional implications and in epilepsy].

INTRODUCTION AND METHOD The cellular mechanisms that regulate neuronal excitability and the propagation of electrical signals in the dendrites of pyramidal neurons are incompletely understood and of key functional and pathological importance. The capacity of dendrites to actively propagate action potentials is vital in processes related to memory and learning. The deregulation of dendritic exci...

متن کامل

The Impact of BK Channels on Cellular Excitability Depends on their Subcellular Location

Large conductance calcium-activated potassium channels (or BK channels) fulfil a multitude of roles in the central nervous system. At the soma of many neuronal cell types they control the speed of action potential (AP) repolarization and therefore they can have an impact on neuronal excitability. Due to their presence in nerve terminals they also regulate transmitter release. BK channels have a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 108 10  شماره 

صفحات  -

تاریخ انتشار 2012